3D Printing Variable Stiffness Foams Using Viscous Thread Instability
نویسندگان
چکیده
Additive manufacturing of cellular structures has numerous applications ranging from fabrication of biological scaffolds and medical implants, to mechanical weight reduction and control over mechanical properties. Various additive manufacturing processes have been used to produce open regular cellular structures limited only by the resolution of the printer. These efforts have focused on printing explicitly designed cells or explicitly planning offsets between strands. Here we describe a technique for producing cellular structures implicitly by inducing viscous thread instability when extruding material. This process allows us to produce complex cellular structures at a scale that is finer than the native resolution of the printer. We demonstrate tunable effective elastic modulus and density that span two orders of magnitude. Fine grained cellular structures allow for fabrication of foams for use in a wide range of fields ranging from bioengineering, to robotics to food printing.
منابع مشابه
Rapid Manufacture of Novel Variable Impedance Robots
Variable stiffness and variable damping can play an important role in robot movement, particularly for legged robots such as bipedal walkers. Variable impedance also introduces new control problems, since there are more degrees of freedom to control, and the resulting robot has more complex dynamics. In this paper, we introduce novel design and fabrication methodologies that are capable of prod...
متن کاملDesign of General Lattice Structures for Lightweight and Compliance Applications
The primary goal is to design parts with lattice mesostructure and demonstrate that they have better structural and/or compliance performance, per weight, than parts with bulk material, foams, or other mesostructured approaches. Mesostructure refers to features within a part that have sizes between micro and macro-scales, for example, small truss structures, honeycombs, and foams. The versatili...
متن کاملBio-inspired Tensegrity Soft Modular Robots
In this paper, we introduce a design principle to develop novel soft modular robots based on tensegrity structures and inspired by the cytoskeleton of living cells. We describe a novel strategy to realize tensegrity structures using planar manufacturing techniques, such as 3D printing. We use this strategy to develop icosahedron tensegrity structures with programmable variable stiffness that ca...
متن کاملHarnessing Seeded Geometric Imperfection to Design Cylindrical Shells With Tunable Elastic Postbuckling Behavior
Geometric imperfection, known as a detrimental effect on the buckling load of cylindrical shells, has a new role under the emerging trend of using buckling for smart purposes. Eigenshape-based geometries were designed on the shell surface with the aim of tailoring the postbuckling response. Fourteen seeded geometric imperfection (SGI) cylinders were fabricated using polymer-based 3D printing, a...
متن کاملA Study of Variable Stiffness Alginate Printing for Medical Applications
Technologies for multi-material 3D-printing of anatomical shapes are useful both for fabrication of heterogeneous cell-seeded implants as well as for fabrication of synthetic models for surgical planning and training. For both these applications, it would be desirable to print directly with biological materials to best emulate the target’s properties. Using a novel material platform, we describ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016